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it has been suggested3 that the odd components of the 
axial crystalline field contribute importantly to the 
value of D, the arguments given are no longer considered 
to be valid.18 While it is clear that such an over­
simplified calculation, based as it is on a point charge 
model, cannot be expected to give accurate results; it 
nevertheless indicates that ionic motion probably plays 
an important role in the microwave electric field effect 
for Fe3+ and Mn2+ just as for Cr3+. However, the above 
discussion does not rule out possible significant con­
tributions from the effect of distortion of the electronic 
wave function of these S-state ions. 

It would be valuable to examine ions which are iso-
electronic to the more tractable Cr3+ ion. These include 
V2+ and Mn4+ which have D parameters in AI2O3 closely 
similar16 to that for Cr3+. In addition, the effect of 

18 J. O. Artman and J. C. Murphy (to be published). 

electric fields on the optical spectra of these ions has 
been studied and interpreted in terms of electronic 
wave function distortion and ionic displacement.19 Both 
of these ions are presently under study in this 
Laboratory. 
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The interaction of large inclusions with slowly moving domain boundaries has been quantitatively ex­
amined and the contribution made by such inclusions to the coercive force predicted. Several physical models 
of the interaction between large inclusions and moving Bloch walls were investigated by making calculations 
of the energy of the closure domain configuration about the inclusions for various positions of the moving do­
main boundary. By statistically treating a random distribution of inclusions, the coercive force was calcu­
lated as a function of the inclusion distribution parameters. Several features of the interactions between 
spike-shaped closure domains and moving domain boundaries have been elucidated. 

I. INTRODUCTION 

IT has been shown by many investigators that dis­
locations, nonmagnetic inclusions, and other chemi­

cal and physical inhomogeneities influence the proper­
ties of bulk ferromagnetic materials. One manner in 
which imperfections affect the magnetic properties of a 
material is by acting as impediments or obstacles to 
the motion of domain boundaries. An analysis of the 
interaction between domain boundaries and structural 
imperfections is important in the understanding of 
irreversible ferromagnetic properties at low and inter­
mediate frequencies. 

The particular problem of the determination of the 
contribution to the coercive force which results from 
the interaction of domain boundaries with large non­
magnetic inclusions is treated in this paper. It consists 
of an analysis of the interaction of a moving boundary 
with the subsidiary domain structure about such 
inclusions. 

One of the first attempts to evaluate the effects of 

nonmagnetic inclusions on coercive force was that by 
Kersten.1 He supposed that the binding energy between 
a Bloch wall and a nonmagnetic inclusion is given by 
the reduction in interfacial energy caused by the inter­
section of the particle by the domain boundary. It was 
shown by Neel2 that when a Bloch wall bisects an 
inclusion, the reduction in the magnetostatic energy is 
much greater than the change in Bloch wall energy and 
is therefore more important in determining the binding 
energy. Neel3 also later showed that it is necessary to 
adopt a realistic statistical model of the particle distribu­
tion to be able to compute the coercive force which arises 
from small inclusions. Dijkstra and Wert,4 using a 
simplified form of NeePs statistical model, calculated the 
coercive force due to inclusions with diameters up to 
the thickness of a Bloch wall. 

1 M. Kersten, Physik Z. 44, 63 (1943). 
2 L . N6el, Cahiers Phys. 25, 21 (1944). 
3 L. Neel, Ann. Univ. Grenoble 22, 299 (1946). 
4 L. J. Dijkstra and C. Wert, Phys. Rev. 79, 979 (1950). 
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The existence of spike-shaped closure domains about 
large inclusions was first predicted by Neel2 and later 
directly observed by Williams.5 Because of the presence 
of the subsidiary domains about such particles, it was 
recognized that a computation of the coercive force 
resulting from the presence of large inclusions must 
take them into account. Neel,2 Dijkstra and Wert,4 and 
Goodenough6 developed similar models for coercive 
force based on the existence of the spike-shaped do­
mains. They proposed that in the absence of other 
mechanisms of demagnetization, the coercive force 
would be equal to the critical field required for the un­
limited growth of the spike-shaped domains. The values 
of coercive force calculated in this way are much higher 
than those observed. 

I t was shown first by Williams7 and later by others8-9 

that the presence of the subsidiary domains around an 
inclusion modifies the interaction of that inclusion with 
a migrating Bloch wall. From this observation it became 
clear that models for the coercive force due to large 
inclusions should be based on the interaction of the 
subsidiary domains with moving boundaries. Further 
evidence of the existence and behavior of Neel spikes 
has been obtained in ferrite materials.10 

Since the observations of Williams played a central 
role in the formulation of several theories relating 
coercive force to large nonmagnetic inclusions, it 
deserves brief mention here. He observed that when a 
Bloch wall approaches an inclusion and its Neel spikes, 
the spikes make contact with the wall and become 
tapered tubes connecting the inclusion to the migrating 
Bloch wall. As the wall moves toward the inclusion, the 
tube domains become shorter and finally disappear 
when the wall bisects the inclusion. When the wall 
migrates away from the inclusion, tube domains are 
re-established between the inclusions and the wall. 
Finally, as the moving wall pulls further away from the 
inclusion the tube domains leave the wall and snap 
back to a spike-shaped configuration. This "snapping" 
process which accompanies the escape of the moving wall 
has been studied experimentally by Bates and Carey8,9 

and theoretically by Brenner.11 Their results indicate 
that the tube domains extend approximately 40% be­
fore the wall breaks free. 

Kondorsky12 and Kersten13 have independently 
established rather similar models for the coercive force 
which results from the interaction between the closure 

6 H. J. Williams, Phys. Rev. 71, 646 (1947). 
6 J. B. Goodenough, Phys. Rev. 95, 917 (1954). 
7 H . J. Williams (unpublished) cited in: C. Kittel and J. K. 

Gait, Ref. 10, p. 530. 
8 L. F. Bates and R. Carey, Proc. Phys. Soc. (London) 75, 880 

(1960). 
9 L. F. Bates and R. Carey, Proc. Phys. Soc. (London) 76, 

754 (1960). 
10 C. Kittel and J. K. Gait, in Solid State Physics, edited by 

F. Seitz and D. Turnbull (Academic Press Inc., New York, 1956), 
Vol. 3, p. 538. 

11 R. Brenner, Z. Angew. Phys. 7, 391 (1955). 
12 E. Kondorsky, Dokl. Akad. Nauk SSSR 68, 37 (1949). 
13 M. Kersten, Z. Angew. Phys. 7, 397 (1955). 

domains of an inclusion and a moving Bloch wall. 
Both of these treatments suppose that the coercive 
force is that field for which a Bloch wall can be pulled 
away from the tube domains connecting it with the 
inclusion. While there is no doubt that the tube domains 
retard the motion of the receding Bloch wall, the snap­
ping process which accompanies the escape of the Bloch 
wall may not be the most significant part of the inter­
action in determining the coercive force. The results 
of the calculations reported in this paper will indicate 
that the "snapping" process plays a rather insignificant 
part in the determination of the binding energy of a 
Bloch wall to a large inclusion. I t should also be pointed 
out that the calculations by both Kersten and Kon­
dorsky were not based on a statistically random distri­
bution of inclusions. Instead, they assumed a specific 
ordered arrangement. 

II. THEORY 

From the observations reported in the previous 
section it is clear that a model for the coercive force of 
materials having large inclusions must include a 
detailed analysis of the behavior of their associated 
domain structure. In addition, a realistic treatment of 
the particle distribution must be utilized. 

The approach which has been adopted in these cal­
culations involves the determination of the energy pro­
file related to the position of a Bloch wall as it passes and 
interacts with an inclusion and its subsidiary domain 
structure. I t will be shown that these energy profiles 
can be characterized by parameters which, through a 
statistical model, lead directly to a calculation of 
coercive force. 

The initial stage of all interactions is assumed to be 
characterized by a planar Bloch wall which is migrating 
toward an inclusion. Before the Bloch wall has reached 
the extremities of the subsidiary domain structure, the 
energy of the system is given by the equilibrium energy 
of the unperturbed closure domain structure about the 
inclusion. As the Bloch wall moves closer to the particle, 
a reaction occurs such that the equilibrium closure 
domain structure is altered. The energy of the system 
can be determined by finding that domain configuration 
for which the total magnetic energy is a minimum. By 
making a computation of the minimum energy of the 
system for all positions of the migrating wall, it is possi­
ble to determine the energy profile related to the wall 
position. When the moving wall has passed the inclusion 
and is no longer interacting with the spike-shaped 
domains, the energy of the system returns to the initial 
value corresponding to the equilibrium structure of the 
closure domains about the inclusion. 

Physical Model for the Interactions 

As in most calculations dealing with domain con­
figurations, it is assumed that the magnetization of each 
domain lies along an easy crystallographic direction 
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and is not perturbed from that direction by the applica­
tion of an external magnetic field. Implicit in this 
assumption is the supposition that the crystal anisot-
ropy energy and the exchange energy of a domain con­
figuration can be accounted for by computing the 
interfacial energies of all of the Bloch walls in the 
configuration. 

I t has been assumed that the inclusions may be 
treated as cubic having edges which lie parallel and 
perpendicular to (100) directions in the cubic lattice. 
Since the thickness of a Bloch wall is approximately 
0.1 /i, it is expected that this calculation is valid only 
for particles larger than one micron in diameter. 

One of the important additional assumptions made 
in this treatment relates to the condition of reversi­
bility which is assumed for all reactions. I t was assumed 
that the migrating Bloch wall moves slowly enough that 
the domain configurations do not differ significantly 
from equilibrium configurations. I t has also been sup­
posed that the nucleation of reverse domains, when 
expected from total magnetic energy considerations, 
occurs with sufficient ease that equilibrium is maintained 
at all times. 

Basic Equations 

The factors which determine the total magnetic 
energy of a given domain configuration are (1) Bloch 
wall energy, (2) magnetostatic energy, and (3) mag-
netostrictive energy 

The calculation of the total Bloch wall energy in 
a complex configuration involves an account of the 
total Bloch wall area as well as a knowledge of the 
interfacial energies of the boundaries which compose 
the configuration. The following interfacial energies, 
which have been determined theoretically14-15 and which 
are in general agreement with those obtained by experi­
ment,16 were used in these calculations: (1) aasotw) 
= 1.8 ergs/cm2; (2) o-(9o^) = 0.9 ergs/cm2; (3) o-(90*o 
= 1.5 ergs/cm2. 

The magnetostrictive energy per unit volume for 
iron is given by 

^ m s = | F e 2 , (1) 

where Y is the elastic modulus, equal to 2X1012 

dynes/cm2 and e is the magnetostriction constant, 
given by Carr17 as 32X10~6. The magnetostrictive 
energy of a domain configuration is found from this 
equation by computing the total volume of the domains 
whose magnetization is normal to the magnetization 
of their environment. 

An accurate calculation of the magnetostatic energy 

14 L. Neel, Cahiers Phys. 25, 1 (1944). 
16 K. H. Stewart, Ferromagnetic Domains (Cambridge Univer­

sity Press, London, 1954), p. 99. 
16 L. F. Bates and P. F. Davis, Proc. Phys. Soc. (London) 74, 

170 (1959). 
17 W. J. Carr, Jr., Magnetic Properties of Metals and Alloys 

(American Society for Metals, Cleveland, 1959), p. 200. 
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FIG. 1. Potential interactions between both 180° and 90° 
Bloch walls and the spike-shaped domains about nonmagnetic 
inclusions. 

of a system can only be made for very simple geometric 
shapes. However, an approximate method which can 
be used in problems relating to domain configurations, 
was suggested by Kittel.18 I t involves the supposition 
that the magnetostatic energy can be treated as an 
interfacial wall energy term applicable to Bloch walls 
exhibiting a uniform distribution of magnetic poles. 
The density of magnetic poles on a Bloch wall is given 
by 47r(ilf 1—M2), where M\ and M2 represent the normal 
components of the intensity of magnetization in the 
adjacent domains. The magnetostatic component of 
the interfacial energy is expressed as 

<rmag=27r(Mi-M2)2d, (2) 

where d is the thickness of the wall. The total magneto­
static energy of a domain configuration is computed with 
this equation by determining the magnetic pole distribu­
tion on each of the Bloch walls in the configuration. 

Statistical Model for Coercive Force 

The basis of the statistical treatment used in this 
paper was first described by Neel3 and later modified 
and simplified by Dijkstra and Wert.4 

Consider a single domain, cubic in shape and having 
a dimension L. A single Bloch wall residing within the 
domain is positioned at Z=Zo. Because of the interaction 
between the inclusions within the domain and the iso­
lated boundary, one may state that the total energy of a 
given domain varies in an irregular manner with the posi­
tion of the moving wall. Neel suggested that the irreg­
ular energy profile can be approximated by a polygonal 
contour having a fixed number of sides. When a wall is in 
an equilibrium position, the force exerted on the wall by 
the application of an applied magnetic field £T(Z0) is 
balanced by the forces exerted on that wall by the 
various inclusions and their subsidiary domain struc­
tures. Since the total force exerted on a single Bloch wall 

18 C. Kittel, Rev. Mod. Phys. 21, 541 (1949). 
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FIG. 2. Sequence of domain con­
figurations which arise as a result of 
the interaction of a large inclusion 
with a moving Bloch wall. 

on 

by the external field is given as 2H(ZQ)MSL
2
7
2 the 

force balance for the wall is expressed as 

2H(Z0)M JJ*=T,i(d/dZt>)E<p(Zi-Zo)l, (3) 

where M« is the saturation magnetization, Z* is the 
coordinate position of the ith. inclusion and <p(Zi—Z0) 
is the decrement in the energy of the system, which 
arises from the interaction of the wall with the ith 
inclusion. 

Inasmuch as the energy profiles within each domain 
in a real material are not identical, the coercive force 
is given by 

HC=(HJ)^'\ (4) 

where Hm corresponds to the steepest energy gradient 
in each domain and the average is taken over all the 
domains in a bulk sample. Following Neel,19 

(HJ)&V= 2(H*(Zo))lnp, (5) 
19 L. Neel, Cahier Phys. 12, 1 (1942). 
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where (H2(Zo)) is the mean value of H2(Zo) taken over 
all values of Zo within a domain, and p is the number of 
sides of the polygonal energy contour. Since a Bloch 
wall interacts with inclusions which are located within 
a small distance J5 from the wall, it follows that the 
polygonal parameter, p, can be approximated as 

p = 2L/8. (6) 

Following the statistical argument given by Dijkstra 
and Wert,4 Eq. (3) yields 

<#2(£o)H-
Js \dZ0 

l<p(Z-Z»)-]\dZ 

4A/7Z,2 (7) 

where n is the number of inclusions per unit volume. 
Letting a be the volume fraction of inclusions and a 
be the inclusion dimension, we have 

n—a/a?. (8) 

Equations (4)-(8) give 

' I-. 
(dZo Hc= 

-I. £<p(Z-Z0)l\ dZ ln(—N 

2Ms
2L2a? 

1/2 

(9) 

where 5 is the distance through which the moving 
domain boundary interacts with a stationary inclusion. 
By letting 

Acpi= f {— [>(Z-Zo)]} dZ, (10) 

the coercive force becomes 

Hc= 

(2L 
a A (pi ln( — 

\ 5 • ) ' 

2Ms
2L2a? 

1/2 

(ID 

In order to compute the magnitude of the coercive 
force it is therefore necessary to determine the parame­
ters Acpi and 5. With these parameters the coercive 
force can be determined from Eq. (11) as a function of 
the average domain size L, and the inclusion parameters 
a and a. 

III. MODELS 

In all, there are seven distinct types of interactions 
that involve spike-shaped domains and either 180° or 
90° Bloch walls. These are illustrated in Fig. 1. Each 
of these interactions has been treated separately and 
characterized by values of the interaction parameters 
Acpi and 5. 

Figure 2 illustrates the sequence of domain configura­
tions which arise during each of the seven interactions. 

The energy profiles, from which the interaction parame­
ters are obtained, have been determined by computing 
the total magnetic energy as a function of Bloch wall 
position by means of the equations given in the previous 
section. To a large extent, the calculations are simple 
geometrical computations but which, nevertheless, are 
tedious and best handled by an automatic digital com­
puter. In two instances, unique features of the inter­
actions must be treated with special consideration. 

Consider the blunt spike domain configuration which 
appears in Fig. 2. The driving force for the formation 
of the blunted spike domain is the reduction in magneto-
static energy associated with free magnetic poles on the 
surfaces of a pointed Neel spike. As the tubular domain 
becomes more blunt, the surfaces become more nearly 
parallel, and the magnetostatic energy is significantly 
reduced. Because of the disturbance at the end of the 
blunt spikes, the moving wall is no longer planar. This 
particular deviation causes magnetic charges to be dis­
tributed on the moving wall as well, and gives rise to an 
associated increment in the total magnetostatic energy. 
It follows that the equilibrium configuration is given 
by the minimum total energy, which involves a com­
promise between the magnetostatic energy of the 90° 
tilt walls and the magnetostatic energy of the moving 
Bloch wall. 

When a moving Bloch wall first interacts with a 
spike-shaped domain at the particle-closure domain 
interface, a special feature is developed. This feature 
is displayed by the interaction C I, which is illustrated in 
Fig. 2. As the wall moves across the inclusion, the 
spike-shaped closure domain is slowly eliminated and 
replaced by a newly-formed closure domain. This process 
was treated quantitatively by applying the results of a 
previous calculation20 in slightly modified form. 

IV. RESULTS AND DISCUSSION 

The details of the quantitative treatment will not 
be given here, since the can be found elsewhere.21 

Energy profiles for each of the seven interactions for 
the case of a 1-fx particle are given in Figs. 3 and 4. The 
interaction parameters Acpi and 5 are given in Table I. 
Typical values for coercive force calculated from Eq. 
(11) are given in Table II. 

A direct comparison of the calculated values of 
coercive force with experimental values can only be 
made when the inclusion volume fraction, domain size 
and inclusion size have all been simultaneously meas­
ured. No such data are yet available. While the coercive 
force data of Dijkstra and Wert4 are applicable only to 
small inclusions, they represent values to which ex-

20 W. D. Nix and R. A. Huggins, Phys. Rev. 121, 1038 (1961). 
Errata: The value of the constant P for a 0.5-/* inclusion should 
be changed to 0.578 X10""9. Graphical representation of the func­
tions are erroneous as a result. The problem has since been solved 
more concisely. (See Ref. 21.) 

21W. D. Nix, Ph.D. dissertation, Stanford University, 1963 
(unpublished). 
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FIG. 3. Energy profiles for the interactions involving 

180° Bloch walls for al- / t inclusion. 

TABLE I. Compilation of the interaction parameters A<pi and 
8 for several inclusion sizes for each of the seven distinct inter­
actions described in Fig. 1. 

Inter­
action 

A I 

B I 

C I 

A l l 

B I I 

C I I 

D I I 

Interaction 
parame­

ters* 

A <pi 
8 

A<Pi 
8 

A<pi 
8 

A(pi 
8 

A<pi 
8 

A<pi 
8 

A (pi 
8 

1.0 

1.9X10-9 
9.4 

l . lXlO- 8 

9.4 

1.2X10-8 
5.9 

2.2X10-9 
12.5 

3.2X10-9 
7.1 

2.2X10-9 
12.5 

3.2X10-9 
7.1 

Inclusion size (microns) 

2.0 

1.6X10-8 

18.8 

8.4X10-8 

18.8 

9.8X10-8 
11.9 

1.7X10-8 
24.9 

2.5X10-8 
14.1 

1.7X10-8 
24.9 

2.5X10-8 
14.1 

4.0 

1.3X10-7 
37.5 

6.8X10"7 

37.5 
8.OXIO-7 

23.8 

1.5X10"7 

49.8 

2.2X10-7 
28.2 

1.5X10-7 
49.8 

2.2X10-7 
28.2 

8.0 

1.1X10-6 

74.6 

5.6X10-6 

74.6 

6.7 X10"6 

47.6 

1.3X10"6 

97.6 

2.5X10-6 

56.4 

1.3 X10"6 

97.6 

2.5X10-6 

56.4 

TABLE II. Compilation of values of coercive force for several 
values of the inclusion size a and volume fraction a for a domain 
size£ = 5X10-3cm. 

Inclusion volume 
fraction 

a =1.0X10-3; 
a = 5.0X10-3; 
a = 1.0X10-2; 
a = 5.0X10-2; 
a=1.0X10~1; 

ft He in oersteds. 

Coercive 
force 

Bc 
Hc 
He 
Hc 

Inclusion size (microns) 

1.0 

0.36 
0.84 
1.20 
2.68 
3.78 

2.0 

0.32 
0.72 
1.02 
2.26 
3.20 

4.0 

0.24 
0.56 
0.78 
1.76 
2.50 

8.0 

0.14 
0.32 
0.44 
1.00 
1.40 

pressions for large inclusions must extrapolate. For 
a=3XlO - 3 and a =1.0 /*, the Dijkstra and Wert data 
extrapolate to 0.5 Oe whereas Eq. (11) yields 0.4 Oe. 
This calculated value is obtained by assuming a domain 
size of 10-2 cm and by taking an average of the coercive 
force values found for each of the seven possible 
interactions. 

From the energy profiles shown in Figs. 3 and 4 it is 
clear that the binding energy between the moving wall 

Energy (ergs x 10^) 

.8 

All CII 

_ i — i — i — 1 _ 

- 6 - 3 0 3 6 

Relative position of moving Bloch wall (microns) 

Energy (ergs x 106) 

BII DII 
.4 

-6 

1 A (pi in ergs2cm_1; 5 in microns. 

Re la t ive p o s i t i o n of moving Bloch wal l (microns) 

FiQ, 4.- Energy profiles for the interactions involving 90° 
Bloch walls for a 1-/* inclusion. 
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and the inclusion is much greater when the wall is near 
the inclusion, especially for 180° walls. I t also follows 
that the parameter, A(pi, which characterizes the bind­
ing energy in Eq. (11), is related more to the behavior 
near the inclusion than to the processes which occur 
when the wall is pulling free from the clinging tubular 
domains. This result indicates that while the snapping 
process should occur, it does not play as central a role 
in the determination of coercive force as has been 
proposed.12,13 

Examination of the energy profiles indicates that 
the tubular domains extend approximately 40% before 
breaking free from the moving wall. This result is 
consistent with experimental observations.8 

Another important feature of the interaction between 
moving Bloch walls and large inclusions concerns the 
transformation of the spike domain structure from one 
form to another. When a 180° wall passes a large in­
clusion, the subsidiary domain structure is transformed 
into one in which the magnetization vectors of the two 
spike domains are antiparallel, regardless of the nature 
of the existing domain structure before the interaction. 
The interaction with 90° walls, on the other hand, causes 
the domain structure to be converted into a form in 
which the magnetization vectors of the two spike-
shaped domains are parallel. Some implications of this 
observation can be found elsewhere.22 

As can be seen from Figs. 3 and 4, the major difference 
between the interaction of large inclusions with 180° 
walls and 90° walls involves the absence of the deep 
energy well in the case of 90° walls. Because of the 
relative orientation of 90° walls with the spike-shaped 
domains, it is impossible to completely eliminate both 
of the closure domains at the same stage of the inter­
action. For this reason, the migrating 90° wall is less 
tightly bound to the inclusion and, therefore, can more 
easily escape. Because of the weak binding for the case 
of 90° walls, one would expect a correspondingly small 
probability that particles will have a significant in­
fluence on the motion of such walls. This particular ob­
servation gives a physical explanation of the experi­
mental fact that 90° walls do not cause Barkhausen 
discontinuities.23 A 180° wall, on the other hand, must 

FIG. 5. Develop­
ment of a fold in 
a Neel spike due to 
the presence of a 
180° Bloch wall. 

22 W. D. Nix and R. A. Huggins (to be published). 
23 R. S. Tebble, Proc. Phys. Soc. (London) B68, 1017 (1955). 

negotiate a deep energy wall as it interacts with each 
large inclusion and can, therefore, cause Barkhausen 
discontinuities. 

An aberration in the perfect spike-shaped domain 
structure which is occasionally observed is shown in 
Fig. 5. This work suggests a possible cause for the 
formation of such a configuration. From the quantita­
tive treatment described one can show that when a 
moving wall encounters the sharp end of a Neel spike, 
the energy of that system is only slightly diminished 
by the formation of a blunt tubular domain. I t is 
therefore possible that under some special circumstances, 
the energy of the blunt configuration may be slightly 
greater than that of the pointed shape. In such a case 
the energy of the domain configuration could be reduced 
by the formation of a fold in the Neel spike, as illustrated 
in Fig. 5. 
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